Correcting Biased Observation Model Error in Data Assimilation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capabilities of data assimilation in correcting sea surface temperature in the Persian Gulf

Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...

متن کامل

Capabilities of data assimilation in correcting sea surface temperature in the Persian Gulf

Predicting the quality of water and air is a particular challenge for forecasting systems that support them. In order to represent the small-scale phenomena, a high-resolution model needs accurate capture of air and sea circulations, significant for forecasting environmental pollution. Data assimilation is one of the state of the art methods to be used for this purpose. Due to the importance of...

متن کامل

Model error estimation in ensemble data assimilation

A new methodology is proposed to estimate and account for systematic model error in linear filtering as well as in nonlinear ensemble based filtering. Our results extend the work of Dee and Todling (2000) on constant bias errors to time-varying model errors. In contrast to existing methodologies, the new filter can also deal with the case where no dynamical model for the systematic error is ava...

متن کامل

An improved approach for estimating observation and model error parameters in soil moisture data assimilation

[1] The accurate specification of observing and/or modeling error statistics presents a remaining challenge to the successful implementation of many land data assimilation systems. Recent work has developed adaptive filtering approaches that address this issue. However, such approaches possess a number of known weaknesses, including a required assumption of serially uncorrelated error in assimi...

متن کامل

Observation impact in data assimilation: the effect of non-Gaussian observation error

Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monthly Weather Review

سال: 2017

ISSN: 0027-0644,1520-0493

DOI: 10.1175/mwr-d-16-0428.1